
 1 

  

Abstract— Objective: Non-invasive identification of motoneuron 

(MN) activity commonly uses electromyography (EMG). 

However, surface EMG (sEMG) detects only superficial sources, 

at less than approximately 10-mm depth. Intramuscular EMG can 

detect deep sources, but it is limited to sources within a few mm of 

the detection site. Conversely, ultrasound (US) images have high 

spatial resolution across the whole muscle cross-section. The 

activity of MNs can be extracted from US images due to the 

movements that MN activation generates in the innervated muscle 

fibers. Current US-based decomposition methods can accurately 

identify the location and average twitch induced by MN activity. 

However, they cannot accurately detect MN discharge times. 

Methods: Here, we present a method based on the convolutive 

blind source separation of US images to estimate MN discharge 

times with high accuracy. The method was validated across 10 

participants using concomitant sEMG decomposition as the 

ground truth. Results: 140 unique MN spike trains were identified 

from US images, with a rate of agreement (RoA) with sEMG 

decomposition of 87.4 ± 10.3 %. Over 50% of these MN spike 

trains had a RoA greater than 90%. Furthermore, with US, we 

identified additional MUs well beyond the sEMG detection 

volume, at up to >30 mm below the skin. Conclusion: The proposed 

method can identify discharges of MNs innervating muscle fibers 

in a large range of depths within the muscle from US images. 

Significance: The proposed methodology can non-invasively 

interface with the outer layers of the central nervous system 

innervating muscles across the full cross-section. 

Index Terms— Motor Unit, Ultrasound, B-mode, Surface 

Electromyography, Human Interfacing 

I. INTRODUCTION 

motor unit (MU) comprises a motoneuron (MN) and the 

muscle fibers it innervates (the latter referred to as the 

muscle unit). The MU is the smallest functional element of the 

muscular system. MUs have been studied within the fields of 

human neuromechanics and clinical diagnosis, classically 

relying on electrical recordings of the action potentials (APs) of 

the muscle unit. Because the neuromuscular junction (NMJ) is 
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a highly reliable synaptic connection, the correspondence 

between an AP discharged by the innervating MN and those 

discharged by the innervated fibers is one-to-one [1]. The sum 

of the electrical activity of MU APs is the electromyogram 

(EMG), which can be detected either at the surface of the skin 

(sEMG) or intramuscularly (iEMG) [2]. sEMG usually presents 

a low spatial resolution [3]–[5] and small surface detection 

volume [5], [6], while iEMG is very selective around the 

electrode site [2]. In each case, a large proportion of the MUs 

in the muscle are not accessible.  

When the muscle fibers are activated, their membranes are 

electrically depolarized and shorten because of the formation of 

actin-myosin cross bridges. The contraction event of the fibers 

of a MU is called a twitch. Much like the transfer of the 

electrical signal at the NMJ, this electromechanical coupling is 

one-to-one, meaning that each mechanical twitch is precisely 

related to an individual MN discharge instance [7]. Thus, the 

activity is translated from the electrical domain to the 

mechanical domain. In theory, a recording of the deformation 

within the muscle could be processed to identify the precise 

time of MU twitches and, thus, to detect the neural input 

received by the muscle from the spinal cord. In contrast to the 

resolution and penetration issues of EMG, ultrafast ultrasound 

(US) could, in principle, detect the small movements of the 

muscle units in any location in the muscle with high temporal 

resolution. For this reason, ultrafast US has recently been used 

to study muscle contraction onset and wave propagation along 

the fiber direction [8]–[14].  

However, these previous works do not focus on individual 

MU activity as the individual MU velocity twitches are very 

small (approximately 3 mm/s [7]), and the territories of 

different MUs overlap in space [15], thus a given muscle region 

has a complex deformation field [16]. When the fibers contract, 

they push and pull on each other and nearby tissues, setting up 

propagating waves within the region [9], [10]. Furthermore, 

deformation due to connective tissue, bones, and blood vessels 
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is larger than the MU twitches, and these structures 

mechanically couple, which generate mechanical noise. 

Separating individual MU activity from these noise sources and 

from the activity of other MUs in US images is challenging. 

Despite the complexity of the problem, methods have been 

proposed to extract neural information from recordings using 

ultrafast US imaging to detect muscle deformation [17]–[19]. 

Current methods are based on spatio-temporal independent 

component analysis (stICA) of linear instantaneous mixtures, 

which optimize sparse spatial filters used as weights for the 

linear combination of pixels to extract temporal information. 

Using these approaches, estimates of MU locations have a high 

repeatability. However, the discharge times are estimated with 

relatively low accuracy (with an agreement between US and the 

gold standard EMG of only ~30% of the discharges) [20]. 

Spatial linear combinations of pixels (which is equivalent to 

spatial filtering of the velocity maps) cannot compensate for the 

long duration of the MU velocity twitch profiles. Instead, an 

inverse transformation which also contains the time variable is 

required. Hence, an anti-transformation in space and time may 

be more appropriate for separating the individual MU activity 

from that of other MUs and noise.  

Because of the electromechanical coupling, the generation of 

a twitch due to a neural discharge can be modelled as a 

convolution of a delta function centered at the discharge instant 

with the twitch response. Therefore, we propose that, compared 

to an instantaneous model, a convolutive generative model will 

more effectively account for the specific temporal dynamics of 

MU activity, allowing for better identification of the times of 

occurrence of MU discharges and better separation from noise. 

We hypothesized that solving the un-mixing problem under the 

assumption of a convolutive mixture will solve the 

decomposition challenge of US deformation fields into 

individual MU contributions with better accuracy than with 

instantaneous models. 

Here, we propose a method for decomposing US image series 

into MN activity using a convolutive blind source separation 

(BSS) method. Unlike previous methods for US analysis [17]–

[20], our method is completely stand-alone and requires no 

concurrent EMG recording. We validated the method using 

simultaneously recorded US and high-density sEMG 

(HDsEMG) signals at low force levels from 10 participants. 

The HDsEMG was decoded using a previously validated EMG 

decomposition algorithm. We used our proposed method to 

decode the deformation fields calculated from US and 

quantified its performance using the rate of agreement (RoA) 

with the HDsEMG decomposition output. This comparison was 

performed only for relatively superficial MUs due to the limited 

detection volume of the sEMG. Further, we quantified the time 

difference between HDsEMG-estimated discharge times and 

the US-estimated discharge times, as well as the range of this 

difference across the 30-s recording intervals. For all US-

identified sources, we further performed a spike-triggered 

average (STA) of the sEMG using the estimated US discharge 

times as triggers. This provided estimated APs for each 

identified source (not only for the sources commonly detected 

between US and sEMG). When the STA was significantly 

above the noise level, the corresponding source was interpreted 

as the series of discharges of a MU. We show that our proposed 

method can extract highly accurate neural activity across the 

full muscle cross-section, with many units detected deeper than 

the penetration depth of electrical signals. The method could, 

therefore, pave the way for an alternative interfacing pathway 

with the output layers of the spinal cord circuitry. 

II. METHODS 

In this section, we describe the convolutive model and 

implementation used for decoding the velocity images from US 

into neural spike trains. We then describe the validation 

approach. 

A. Model 

When MUs are activated, a series of APs travel through the 

muscle fibers causing a series of twitch responses of the fibers. 

The AP discharge times can be modelled as a series of delta 

functions and the twitches as impulse responses. The resulting 

US images are then the sum of the convolutions of the delta 

functions and their impulse responses. Additional noise, such 

as that from the US imaging and velocity tracking, also 

contributes to generating the US image series. 

Let 𝑥𝑖(𝑡) with 𝑖 = 1, 2, … , 𝑚 denote the axial velocity in the 

𝑖𝑡ℎ pixel of the US images, evolving over time 𝑡 ∈ [0, 𝑇]. Then, 

we can represent 𝑥𝑖(𝑡) as the result of the following 

convolutional model: 

 

𝑥𝑖(𝑡) =  ∑ ∑ ℎ𝑖𝑗(𝑙)𝑠𝑗(𝑡 − 𝑙)

𝐿−1

𝑙=0

𝑛+𝑘

𝑗=1

+  𝜀𝑖(𝑡) + 𝜔𝑖(𝑡) 

 

(1) 

 

where n is the number of MU sources, k is the number of non-

MU sparse sources (e.g., cyclo-stationary movements of 

structures within the muscle, such as blood vessel pulsations), 

𝑠𝑗(𝑡) is the 𝑗𝑡ℎ source as a function of time 𝑡, ℎ𝑖𝑗(𝑙) is the 

impulse response (filter) for the 𝑖𝑡ℎ pixel and 𝑗𝑡ℎ source, with 

finite duration 𝐿, 𝜀𝑖(𝑡) is the additive non-white noise (e.g., 

bone movement), and ω𝑖(𝑡) is the additive white noise at the 

𝑖𝑡ℎ pixel. In the isometric contractions considered here, we 

assumed 𝜀𝑖(𝑡) to be negligible. The 𝑛 sources consist of a series 

of delta functions, i.e., vectors of ‘0’s and ‘1’s in the time 

domain. The twitch profile for a specific source, i.e., ℎ𝑖𝑗(𝑙), is 

assumed to be the same for each discharge.  

Eq. (1) has the same form as the generation model of EMG 

signals [21]. Nonetheless, velocity twitches in US have a much 

longer time support than APs in EMG, and usually, the velocity 

twitches are longer than the average duration of the inter-spike 

interval (ISI)  [7], [16]. Moreover, the signal-to-noise ratio 

(SNR) of single-unit velocity twitches is much lower than that 

of single-unit APs. The identification of the MU discharges 

from the US deformation maps can, therefore, be approached 

partly with methods developed for surface EMG decomposition 

but with adaptations due to the more challenging problem. In 

the following, we present a BSS approach for MU discharge 

times from US images partly derived from previous EMG 

processing methods [21], [22], but adapted to the US signal 

properties.  

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3340019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on January 02,2024 at 13:44:47 UTC from IEEE Xplore.  Restrictions apply. 



 3 

The velocity signal in Eq. (1) corresponds to the ith pixel of 

the recording. By extending Eq. (1) to all pixels, we obtain the 

axial velocities in matrix form 𝒙(𝑡) =
[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)] , where m is the number of pixels. The 

𝑛 + 𝑘 sources can also be represented in matrix form as 𝒔(𝑡) =
[𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛+𝑘(𝑡)]. 
 

B. Implementation 

To identify the 𝑛 + 𝑘 sparse sources in 𝒔(𝑡) in Equation (1), 

the problem is reformulated to a standard linear independent 

component analysis (ICA) model [23], which is an effective 

model in identifying sparse components [24]. Given the finite 

duration of the filters (L), the convolutive mixture can be 

written as a linear instantaneous mixture of a new set of sources, 

which contains the original sources and their delayed versions. 

The delay of the sources is used to write convolutions as matrix 

multiplications so that each source is delayed L times, from 1 to 

L samples (i.e., the duration of the impulse response). We can 

further delay the velocity signals to maintain a large proportion 

of observations with respect to sources. Assuming the sources 

are delayed by up to L samples and the observations by up to R 

samples, we obtain the following new vectors: 

 

�̃�(𝑡) = [𝑠1(𝑡), 𝑠1(𝑡 − 1), … , 𝑠1(𝑡 − 𝐿 − 𝑅 + 2), 
… , 𝑠𝑛+𝑘(𝑡), 𝑠𝑛+𝑘(𝑡 − 1), … , 𝑠𝑛+𝑘(𝑡 − 𝐿 − 𝑅 + 2)]𝑇 

𝒙(𝑡) = [𝑥1(𝑡), 𝑥1(𝑡 − 1), … , 𝑥1(𝑡 − 𝑅 + 1), 
… , 𝑥𝑚(𝑡), 𝑥𝑚(𝑡 − 1), … , 𝑥𝑚(𝑡 − 𝑅 + 1)]𝑇  

�̃�(𝑡) = [𝜔1(𝑡), 𝜔1(𝑡 − 1), … , 𝜔1(𝑡 − 𝑅 + 1), 
… , 𝜔𝑚(𝑡), 𝜔𝑚(𝑡 − 1), … , 𝜔𝑚(𝑡 − 𝑅 + 1)]𝑇 

 

With the above definitions, and setting 𝜀𝑖(𝑡) to zero, we can 

define the following equivalent linear instantaneous model: 

 

𝒙(𝑡) =  �̃��̃�(𝑡) + �̃�(𝑡) (2) 

 

This can now be solved using standard ICA methods and 

used to estimate 𝒔(𝑡).  

Given a series of US deformation maps, our first processing 

step is to divide the data into sub-grids (of size 10 by 10 pixels, 

corresponding to 3 by 3 mm) such that all subsequent 

processing is done on a reduced area of the map. The reason for 

this segmentation is two-fold: firstly, this reduces the number 

of sources expected in the region and thus simplifies the 

separation; secondly, given that the next step is to extend the 

observations by a factor of R, we limit the number of 

observations to reduce the size of the extended matrix and 

thereby the computational load. Once the processing is 

complete on one sub-grid of the US image sequence, we slide 

the grid by 5 pixels (resulting in a partial overlap of 5 pixels 

between one window of data and the next window) and repeat 

the processing for the new data. This is equivalent to limiting 

the number of observations m in Eq. (1) to 100 pixels for each 

decomposition stage. 

Once the data has been windowed, vectorized into 2D and 

standardized such that each row has mean 0 and standard 

deviation 1, we extend the data by introducing R delayed 

versions of each observation. Following this, the mean is 

subtracted along each dimension. Next, we whiten the extended 

observation matrix �̃�(𝑡), such that they are uncorrelated for 

time lag zero and have unit variance. To whiten, we use 

eigenvalue decomposition of the covariance matrix of �̃�(𝑡), 

which is a square matrix with size m×R by m×R. The 

theoretical number of non-zero eigenvalues is, however, 

(n+k)×L<m×R because the observations are linear 

combinations of (n+k)×L sources. Therefore, the covariance 

matrix of �̃�(𝑡) does not have full rank and has (m×R)-

((n+k)×L) non-zero eigenvalues. Because n+k is not known a 

priori and because the estimated eigenvalues are in practice all 

different from zero due to noise, the number of eigenvalues 

retained for source estimation has to be blindly estimated. In 

practice, we apply a threshold on the eigenvalues, and assign 

those eigenvalues smaller than the threshold to noise and the 

ones remaining to the sources [25]. We choose a threshold of 

70% empirically, however this could be adapted participant-

wise (see Discussion). By employing this thresholding step, we 

implicitly assume that the additional noise is a stationary, 

temporally and spatially white, zero-mean random process. 

This is explained in detail in step 5 of the pseudocode in section 

II.C and is a crucial step for noise removal. 

A key assumption for the whitening is that the 

autocorrelation matrix for time lag zero of the extended sources 

is diagonal. This property is not valid for generic delayed 

sources. In our case, because the sources are series of delta 

functions, the assumption holds as long as the maximum delay 

L+R is shorter than all the ISIs [21], [22]. While this is the case 

for the mathematically similar problem of EMG decomposition 

[3], [21], [22], it is not valid for US, where the velocity twitches 

have a large time support [7], [16], [26]. Therefore, when the 

sources are extended, there will be one or more delayed source 

with at least one discharge in common with the original source, 

and potentially other discharges in common with other delayed 

versions of the same source. In this situation, the scalar product 

between extended sources at the time lag zero is not always 

zero, and the autocovariance matrix of the extended sources is 

not exactly diagonal. Nonetheless, we notice that the effect of 

non-zero values outside the diagonal of the covariance matrix 

of extended sources should be negligible due to the small 

number of non-zero entries with respect to the total number of 

off-diagonal elements. This is a direct consequence of the 

sparsity of the sources. Thus, the whitening is minimally 

affected by impulse responses longer than the ISI, as we later 

verified empirically. This practically means that we can 

deconvolve the sources and the unknown filters in the case of 

sparse sources even if the filter impulse responses are longer 

than the average distance between activation instants. 

After whitening, we applied a fixed-point algorithm to 

estimate the separation vector and thus separate the sources, 

with additional Gram-Schmidt orthogonalization to ensure 

orthonormality and to increase the number of identified sources 

[27]. Given the high levels of noise within the data, the filters 

estimated through the fixed-point iteration are unable to 

separate the source signals and noise fully. In practice, the 

estimated sources are not ideal trains of delta functions, and an 

advanced peak detection approach is needed. Hence, we applied 
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a further blind deconvolution step on each estimated source to 

identify the MU spike train times. Here, the estimated source 

was extended and delayed, and a second fixed-point algorithm 

was used to estimate the deconvolved signal, as suggested in a 

previous work that used linear instantaneous mixing models for 

ultrafast US decomposition [26]. Finally, the peaks of the 

estimated sources were identified using a peak-finding 

algorithm based on the height of the peaks and the time between 

them [26]. 

The aim of each of the fixed-point algorithms is to maximize 

the sparsity of the source vector. This is done using a contrast 

function G(x) in the form of its first derivative g(x) and its 

second derivative g'(x). For the first fixed point algorithm 

(pseudocode step 7.2.1), we used 𝐺(𝑥) = log (cosh(x)) to 

maximize the kurtosis of the estimated signals. For the blind 

deconvolution peak finding algorithm, we used 𝐺(𝑥) =  
1

6
𝑥3, 

thus maximizing the skewness of the estimated signal. 

Following the second fixed-point algorithm, the identified 

peaks were used to calculate the variability in the predicted 

discharge times under the assumption that an accurate MU 

spike train will present some level of regularity in the discharge 

times. The process was then continued iteratively whilst the 

variability of discharge times decreased. As such, the iterative 

process continued to improve the source estimation until it no 

longer met an improvement threshold. Then, the estimated 

source was retained if it fulfilled the criteria set for a MU 

source. The whole process was then repeated for a set 𝑁𝑖𝑡𝑒𝑟  

times before the window was moved and the process repeated.  

Given the k non-MU sparse sources in the convolution term 

in Equation (1), some estimated sources reflected non-MU 

activity, such as blood vessel pulsations. An example of one 

such output is shown in the Supplementary Material (i). We 

then selected putative MUs based on the expected features of a 

sequence of MU discharges – the discharge variability should 

be low, and the energy of the signal within the expected range 

for MU discharge (6 - 16 Hz used for low force level 

contractions) should be high. Thresholds for these cut-offs were 

chosen empirically: for any given unit if the mean absolute 

deviation in the discharge time was greater than 25 ms, or if less 

than 20% of the energy was in the 6 - 14 Hz band (the energy 

band expected for low contraction level MU activity), the 

estimated source was disregarded.  

Finally, neighboring decomposition windows from the full 

velocity map often detect MUs in common, given that MU 

territories are often larger than 3 by 3 mm in the tibialis anterior 

(TA) [28]. To detect common MUs among decompositions, we 

calculated the cross-correlation between estimated sources. If 

the cross correlation was greater than 30%, the sources were 

considered estimates of the discharge series of the same unit 

[29]. In this case, the estimated source with the lowest discharge 

variability was retained, and the others discarded. 

Through the above process, we obtain a two-dimensional 

map of the muscle with localizations of estimated MUs within 

the muscle cross-section, alongside an estimation of their 

discharge times. 

C. Algorithm 

The process described in section II.A is presented in 

pseudocode in Table 1. The blind deconvolution peak finding 

algorithm is presented elsewhere [26]. 

D. Experimental validation 

For the validation of the proposed method, we used 

experimental data previously collected [16] (10 participants, 

26.2 ± 2.9 years, 173.2 ± 7.3 cm, 69.1 ± 12.0 kg). In brief, 

HDsEMG and US data were concurrently recorded during low-

force isometric contractions with online feedback on the 

activity of a small number of MUs online decomposed from 

surface EMG. This section provides details on the experimental 

setup, data processing, and data analysis. 

TABLE I 
PSEUDOCODE 

𝑼𝒍𝒕𝒓𝒂𝒔𝒐𝒖𝒏𝒅𝑪𝒐𝒏𝒗𝑩𝑺𝑺(𝑥) 

𝑝𝑤𝑖𝑑𝑡ℎ = 𝑝𝑑𝑒𝑝𝑡ℎ = 10, 𝑅 = 10, 𝑇𝑜𝑙 =  0.0001  

1. Reshape window 𝑥(𝑝𝑑𝑒𝑝𝑡ℎ , 𝑝𝑤𝑖𝑑𝑡ℎ , 𝑡) →  𝑥(𝑝𝑑𝑒𝑝𝑡ℎ × 𝑝𝑤𝑖𝑑𝑡ℎ , 𝑡) 

2. Z-score 𝑥 along time dimension 

3. Extend 𝑥 by R: 𝑥(𝑝𝑑𝑒𝑝𝑡ℎ × 𝑝𝑤𝑖𝑑𝑡ℎ , 𝑡) → �̃�(𝑅 × 𝑝𝑑𝑒𝑝𝑡ℎ × 𝑝𝑤𝑖𝑑𝑡ℎ , 𝑡) 

4. Subtract mean of �̃� in 2D 

5. Eigenvalue whitening of �̃�: Obtain eigenvectors �̃� = (𝑒1, … , 𝑒𝑛) 

and corresponding eigenvalues 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑛) of the 

covariance matrix of �̃�. Select q such that the last q eigenvalues (in 

ascending order) contribute to 70% of the variance. Define �̃� =

(𝑒𝑞 , … , 𝑒𝑛) and �̃� = 𝑑𝑖𝑎𝑔(𝑑𝑞, … , 𝑑𝑛). Whitening matrix 𝑊𝑀 =

(�̃�  − �̂�2)−
1

2 �̃�𝑇 with �̂�2 = 𝐸{𝑑1, … , 𝑑𝑞−1}. Then 𝑧 = 𝑊𝑀 �̃�. 

6. Initialize the matrix 𝐵 to zeros.  

7. For 𝑖 = 1,2, … , 𝑦 repeat: 

7.1. Initialize the vector 𝑤𝑖(0) and 𝑤𝑖(−1) 

7.2. While |𝑤𝑖(𝑛)𝑇𝑤𝑖(𝑛 − 1) − 1| > 𝑇𝑜𝑙 
7.2.1.  Fixed point algorithm: 

𝐴 = 𝐸{𝑔′[𝑤𝑖(𝑛 − 1)𝑇𝑧]} 

𝑤𝑖(𝑛) =  𝐸{𝑧𝑔[𝑤𝑖(𝑛 − 1)𝑇𝑧]} − 𝐴𝑤𝑖(𝑛 − 1) 

7.2.2. Orthogonalization 

𝑤𝑖(𝑛) =  𝑤𝑖(𝑛) − 𝐵𝐵𝑇𝑤𝑖(𝑛) 

7.2.3. Normalization 

𝑤𝑖(𝑛) =
𝑤𝑖(𝑛)

||𝑤𝑖(𝑛)||
 

7.2.4. Set 𝑛 = 𝑛 + 1 

7.3. End while 

7.4. While 𝐶𝑜𝑉𝑛 < 𝐶𝑜𝑉𝑛−1 

7.4.1.  Estimate source 𝑠𝑖 = 𝑤𝑖(𝑛)′𝑧 

7.4.2.  [�̃�𝑖 , 𝑃𝑇𝑛,  𝐶𝑜𝑉𝑛] = 𝐵𝑙𝑖𝑛𝑑𝐷𝑒𝑐𝑜𝑛𝑣𝑃𝑒𝑎𝑘𝐹𝑖𝑛𝑑𝑖𝑛𝑔(𝑠𝑖) 

7.4.3.  𝐶𝑜𝑉𝑛−1 = 𝐶𝑜𝑉𝑛 

7.4.4. 𝑤𝑖(𝑛) = 𝐸{𝑧(𝑡𝑗)} where 𝑡𝑗  are the times of pulses of 𝑃𝑇𝑛 

7.4.5.  Set 𝑛 = 𝑛 + 1 

7.5. End while 

7.6. Set 𝐵𝑖 = 𝑤𝑖(𝑛) 

7.7. If criteria fulfilled, save source estimate �̃�𝑖 

8. End 
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1) Ethical approval 

The experiments were approved by the Imperial College 

Research Ethics Committee (reference: 20IC6422) in 

accordance with the Declaration of Helsinki. Before data 

collection, the volunteers were briefed on the study, presented 

with a participant information form, allowed to ask any 

questions, and asked to sign a consent form. As the datasets 

acquired are large, the data were not registered in a public 

database but may be made available, as appropriate, upon 

request. 

2) Equipment and synchronization 

 The US data were acquired using the Vantage Research 

Ultrasound Platform (Verasonics Vantage 256, Kirkland, WA, 

USA) using an L11-4v transducer with 128 elements and a 

center frequency of 7.24 MHz. A recording time of 30 s was 

used, at a frame rate of 1000 Hz due to plane wave imaging with 

a single angle. Hence, 30,000 frames (357 by 128 pixels) of US 

data were recorded per trial, followed by delay and sum 

beamforming. Two HDsEMG grids were used (64 channels; 5 

columns and 13 rows; gold coated; 8 mm interelectrode 

distance; OT Bioelettronica, Torino, Italy). The signals were 

recorded in monopolar derivation, amplified, sampled at 2048 

Hz, A/D converted to 16 bits with gain 150, and digitally 

bandpass filtered (10–500 Hz), using an EMG pre-amp and a 

Quattrocento Amplifier (OT Bioelettronica, Torino, Italy). The 

systems were synchronized using a 1 µs active low output from 

the Verasonics system, elongated in time using an Arduino 

UNO and fed into the EMG amplifier. 

3) Experimental set-up 

The TA muscle was used for this experiment (for reasoning, 

see [16]). The skin over the TA was shaved and cleansed with 

a chemical abrasive and alcohol. Next, two HDsEMG grids 

were placed along the length of the muscle fibers, leaving an 

approximately 1.5 cm gap between them, roughly in the middle 

of the length of the muscle. The grids were secured with 

medical tape and Tegaderm Film Dressings. The US probe was 

placed perpendicular to the length of the muscle in the gap 

between the EMG grids, secured using a custom-built probe 

holder and a water-based gel was applied between the probe and 

the skin. It is widely assumed that due to the isovolumetric 

nature of muscle fibers [30]–[33], the muscle fiber shortening 

will result in a cross-sectional increase in area [34], [35], which 

has been shown experimentally [36], [37]. Thus, we measured 

local deformations perpendicular to the length of the muscle as 

a proxy for muscle shortening. We oriented the probe this way 

to increase the number of MUs crossing the US imaging plane, 

thus increasing the number of units detectable. The participant 

was seated comfortably, and their leg was secured in an ankle 

dynamometer to record force. A screen was placed such that the 

participant could see it to be used for feedback. The 

experimental set-up is shown in Supplementary Materials (Fig. 

S2). 

4) Experimental protocol 

Using the methodology presented in [38], real-time 

decomposition of the HDsEMG signal was performed, and 

visual feedback in the form of MU discharges was provided to 

the participant. Training for the decomposition was done on a 

signal recorded at constant force corresponding to 10 % of the 

maximum voluntary contraction force. Following training, the 

participant recruited an individual MU and held a constant 

force, at which point the experimenter began a 30-s US 

recording. After a 60-s rest period, the participant repeated this 

contraction. This was repeated with an increasing number of 

concurrently active MUs, up to a total of 6 (or fewer, if fewer 

were decomposed).  

5) Processing and decomposition 

The HDsEMG data were re-processed using extensively 

validated offline decomposition methods [21] to ensure high 

decomposition accuracy. Following this, the estimated MU 

discharges were manually refined and edited by an expert [39]. 

A 2D autocorrelation method [40] was used on the 

reconstructed radio-frequency US data to calculate the tissue 

velocity, using a sliding window of 2 ms in time and 1 mm in 

depth. A negative velocity indicated motion away from the 

probe (and hence the skin). Then, the velocity data were 

processed, as described in sections II A-C. The outputs of this 

processing were the estimated MU discharge times. 

6) Data analysis 

For each MU spike train identified using US, the depth of the 

3 by 3 mm window in which the unit was identified was 

recorded. For each MU, the firing rate, coefficient of variation 

of the ISI (CoV, defined as the standard deviation divided by 

the mean of the ISI), and the pulse-to-noise ratio (PNR, defined 

as the average peak height divided by the average baseline 

noise) was calculated. For the validation, MU spike trains 

identified from both EMG and US had to be paired. To do so, 

the number of matched discharges between the two modalities 

was calculated within a window of 0-5 ms. If more than 30% of 

all discharges were matched, the units were defined as common 

units [29]. The RoA was calculated for each EMG-US unit pair 

as 𝑅𝑜𝐴 =  
𝐶

𝐶+𝐸+𝑀
× 100 %, with C = number of correct spikes, 

E = number of extra spikes, M = number of missed spikes. 

Furthermore, the average time difference between the EMG and 

US-identified spikes was calculated, as well as its standard 

deviation over the 30-s recording. 

For each US-identified MU spike train (including the MUs 

not identified by sEMG decomposition), we spike-triggered 

averaged the raw monopolar EMG signals using the US-

estimated discharges as trigger. This was done to verify that the 

sources identified from US and not from sEMG were MU 

activities. The rationale was that if the estimated sources were 

MU activity, then the STA of the sEMG from these sources 

should have resulted in waveforms above the noise level. 

Therefore, the SNR of the triggered sources was calculated as 

10𝑙𝑜𝑔10(
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑀𝑈𝐴𝑃)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑛𝑜𝑖𝑠𝑒)
). 

Descriptive statistics are provided for results, including 

mean, median, and standard deviation. The characteristics of 

the population of MUs identified by sEMG and US were 

compared using a t-tests, given the large sample sizes. The 

significance level was set as p < 0.05. The p-values are stated 

on each graph with 3 significant figures, and any p-values lower 

than 0.001 are labelled as p < 0.001. 
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III. RESULTS 

Fig. 1 shows an example of the processing steps for an 

experimental signal, exemplifying the steps of the method, 

including extending, whitening, and the fixed-point iteration. 

Across 10 participants, 641 unique MU spike trains were 

identified using HDsEMG and 409 using US. Of these, 140 

were determined to be matched between the two modalities. 

Throughout the results, the 140 matched US spike trains will be 

referred to as the common units. These were used to validate 

the proposed method by means of comparison with their 

matched EMG counterparts. In Fig. 2 two 4-s intervals of US 

source estimation outputs are shown. In the first example (a), 

no paired EMG unit had been identified. In contrast, the second 

example (b) is that of a common unit, and the EMG-identified 

discharge times are shown. 

For the common units, the median RoA (a compound 

measurement of true positives, false positives, and false 

negatives) was 90.3 % (mean 87.4 ± 10.3 %), and the median 

percentage of EMG discharges accurately identified with US 

(true positives) was 94.9 % (mean 93.1 ± 6.4 %). The 

distributions of these measures are shown in Fig. 3 (a). Of the 

140 units, 51% had RoA > 90%, and 6 units had RoA 100%. 

The mean firing rate for all common units was 8.5 Hz, therefore 

on average each MU had 255 firings per recording.  

Fig. 3 (b) shows the distributions of the time shifts applied to 

the US decomposed units to match EMG times, i.e., the delay 

between the EMG and US-identified discharge times for each 

unit, and (c) shows the standard deviation of the difference 

between the discharge times. These plots together show that 

although, for a given unit, there is a distinct time shift between 

the EMG and US discharge times (13.5 ± 5.4 ms), the shift is 

relatively constant across the 30-s period (with a low variability 

of 0.89 ± 0.19 ms). Thus, the time shift is an expected fixed 

delay between the electrical and mechanical activity. 

Whilst the 140 units identified by both US and EMG have 

been validated by means of RoA, the remaining 296 MUs 

identified by US could not be validated with direct comparison 

with surface EMG (they were outside the detection volume of 

sEMG). To validate these sources as well, we first analyzed the 

 
Fig. 1.  Illustration of the proposed method to detect MU discharge times from US. A 2.5-s interval of data is shown for (a)-(f) for clarity. (g) shows the full output 

over the 30-s recording duration. (a) Input velocity data with dimensions pixels × time. (b) Extended velocity data and autocorrelation matrix of the extended 

velocity data (𝑅𝑥𝑥). (c) Whitened data after removal of noise components and autocorrelation matrix of whitened data (𝑅𝑧𝑧), showing approximate diagonality. (d) 

First step of the fixed-point iteration, showing the projection vector 𝑤𝑖(1) in red (randomly initialized), the estimated source 𝑠𝑖(1) and the estimated source after 

the integrated blind deconvolution �̃�𝑖(1). (e) An example of the middle step of the fixed-point iteration. (f) The final step of the fixed-point iteration. The iteration 

ends here as the coefficient of variation of the estimated discharge times stops decreasing. (g) The full final output of the method shows estimated discharge times 

as red circles.  

 
Fig. 2.  Outputs of the decomposition function applied to the US image series. 

In each case, a 4-s interval of the 30-s recording is shown for clarity. Top: The 

estimated source for a deep MU, with identified MU discharge times marked 
by circles. Bottom: The estimated source for a superficial MU, alongside 

estimated discharge times for the same MU from the HDsEMG decomposition 

(red lines). Good correspondence is seen between HDsEMG and US-detected 
discharge times. Furthermore, similar properties are seen for the superficial 

and deep units. 
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properties of the 296 remaining units and compared them with 

those of the common units. In addition, we analyzed the STA 

of the non-common units, as described later. The distributions 

of the CoV, discharge rate, and PNR of these two groups are 

presented Fig. 4. Whilst there was a statistical difference in the 

CoV (21.6 ± 5.7 and 23.4 ± 5.1 % respectively for common 

units and other units, p = 0.002) and the PNR (23.0 ± 2.1 and 

21.9 ± 1.7 dB respectively for common units and other units, p 

< 0.001) of the two groups, there was no statistical difference 

in the discharge rate between the two groups (8.5 ± 0.8 and 8.5 

± 0.9 Hz respectively for common units and other units, p = 

0.627). Given that the experimental protocol ensured stable 

recruitment of EMG-detectable units, it is likely that this 

slightly reduced the CoV of the discharge times for the EMG-

detectable units.  

Fig. 5 shows the depth-wise comparison for the two groups 

of US units (common and non-common with EMG), showing a 

marked difference in the distribution of the EMG-detectable 

MUs with respect to the non-EMG-detectable MUs. The great 

majority of the MUs detected from US but not from EMG were 

located deeper in the muscle than the common units. The mean 

depth of the common MUs (3.9 ± 2.7 mm, which corresponds 

to the detection volume of the EMG) was significantly smaller 

than the mean depth of the MUs detected only by US (9.8 ± 5.6 

mm) (p<0.001). Of the units detected by US alone, 38% were 

in the most superficial 1 cm of tissue – the expected detection 

volume of sEMG.  

Fig. 6 illustrates the estimated waveforms from the STA of 

sEMG that used US spike trains as triggers, for different depths 

within the muscle cross-section. For more superficial units 

(e.g., at a depth of 3 mm), the MUAP peak-to-peak amplitude 

was large (approx. 0.1 mV) because of the short distance of the 

fibers from the skin. Conversely, for deep units (e.g., at a depth 

of 31.5 mm), the MUAP amplitude was small (approx. 0.03 

mV) because of the greater distance from the skin surface. 

However, the classic MUAP waveform shape is evident in all 

cases and in all cases the peak-to-peak value of this waveform 

is well above the noise level. Therefore, these sources, while 

being only detectable from US because too small in the EMG 

recording, clearly corresponded to MU activity. 

Fig. 7 (b) shows, for all 409 MUs detected from US, the 

MUAP signal-to-noise ratio as a function of the depth of the 

unit within the muscle, showing a decrease with depth as the 

signal gets more attenuated. The average SNR in the most 

superficial 1 cm of tissue (the approximate detection volume of 

sEMG) was 29.6 ± 13.3, whereas the average SNR below the 

most superficial 1 cm of tissue was 15.3 ± 10.8. In contrast, the 

PNR of the US estimated sources (shown in Fig. 7 (a)) was the 

same in each region (22.4 ± 1.9 and 22.0 ± 1.9).  

 
Fig. 3.  (a) Decomposition accuracy for commonly identified units with respect 

to the rate of agreement (median 90.3 %) and the percentage of discharges 

detected using EMG, which were also detected using ultrasound (median 94.9 
%). (b) The distribution of the time shifts between the discharge times 

estimated from ultrasound and EMG (mean 13.5 ± 5.4 ms). (c) The distribution 

of the average variation of this difference (mean 0.89 ± 0.19 ms). It is clear 
that whilst there is an offset between the identified discharge times from the 

two modalities, the variation of this offset over the 30-s recording is low, so 

the offset is relatively constant. 

 

 
Fig. 4.  Comparison of common units (those identified by both US and EMG), n = 140 and other units (those identified only by US, n = 269) based on three metrics: 

the coefficient of variation, discarge rate, and pulse to noise ratio. 
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IV. DISCUSSION 

We have presented an US decomposition algorithm for 

estimating MU discharge times in voluntary contractions using 

convolutive BSS with an integrated blind deconvolution step. 

We theorized that this technique would separate the MU-related 

signals from the large noise more successfully than previous 

methods for US decomposition that rely on linear instantaneous 

mixture models [17], [20]. Furthermore, by combining 

traditional convolutional BSS methods with an integrated blind 

deconvolution, we achieved better signal separation for the 

noisy input than the convolutive BSS alone. Our method 

provides a way to non-invasively analyze MN activity for MUs 

spanning a full muscle cross-section, enabling a more complete 

way to interface with the central nervous system than has 

previously been possible. We include in Table 2 a comparison 

between the methods presented in this paper (termed ‘US 

(convBSS)’) and other methods for individual MU analysis, 

including EMG-based methods and the stICA US 

decomposition method. We also include other methods used for 

single MU analysis in skeletal muscle – mechanomyography 

(MMG) [41]–[43] and magnetic resonance imaging (MRI) [28], 

[44]–[46]. From this table we note that our presented method is 

the only one capable of extracting MN discharge times non-

invasively across the muscle cross-section. 

The method proposed in this paper therefore has clear 

advantages with respect to other techniques, such as EMG, and 

other US-based analyses. Such advantages make it particularly 

suited to applications such as human-machine interfacing for 

prosthesis control. Classically, control of prostheses by 

interfacing with the peripheral nervous system has relied on 

global features of the EMG, either in the time or frequency 

domain. Recently, more accurate control has been achieved 

following developments enabling the extraction of MN 

discharge times from HDsEMG signals [47]–[51]. This control 

relies on the ensemble of discharge times from the active MUs. 

However, this is still limited by the low penetration depth of 

sEMG – MNs innervating deep portions of muscles, or entire 

deep muscles, are invisible to this technique. This issue opens a 

potential use of the method presented here: using US, deep 

muscle can be accessed and, using the convolutive BSS, MN 

discharge times can be extracted. Hence, this could be a new 

pathway for human-machine interfacing based on neural drive 

to the full muscle cross-section for prosthesis control. However, 

future work on wearable US devices capable of handling large 

amounts of data is required to further this goal. 

In the experimental validation, across 10 participants, we 

obtained 409 estimated discharge patterns, 140 of which were 

 
Fig. 6.  Examples MUAPs obtained by performing a spike-triggered average 

on the EMG signals using discharge times for US detected MUs. The black 
dotted line shows the discharge time identified by the US-based method. 

Superficial MUs show a larger amplitude MUAP with a greater signal-to-noise 

ratio. However, although the deep units are too distant to be detectable by 
EMG, the MUAP shape is still visible. 

  
 

Fig. 5.  Distribution of MUs identified using US decomposition with respect 

to depth within the muscle, split between units found in common with 

HDsEMG decomposition (orange, n = 140) and the units that are only 
identified with the US-based method (blue, n = 269). As expected, the orange 

distribution peaks within the superficial region of the muscle, as this is where 

EMG-detectable units lie. Despite the limited detection volume of EMG, peaks 
are seen in the distribution below 10 mm. These are attributed to split 

territories and muscle fiber pennation angle. In contrast, the blue distribution 

spans the full US imaging depth, showing that US can detect deeper MUs than 
EMG. Further, 38% of MUs detected by only US were in the most superficial 

1cm of muscle, therefore US was able to detect units within the EMG detection 

volume which were not detected using EMG. 

  

 
Fig. 7.  (a) Ultrasound output PNR as a function of depth. The green region 

represents the approximate detection volume of EMG. The mean PNR in the 

green region is 22.4 ± 1.9 (n = 230) and the mean PNR in the white region is 
22.0 ± 1.9 (n = 179). Therefore, no degradation of PNR is seen with depth. (b) 

Distribution of MUAP SNR obtained by spike-triggered averaging of the EMG 

signals using ultrasound US discharge times for all US-detected MUs as a 
function of depth. In the green region the mean SNR is 29.6 ± 13.3 (n = 230) 

and in the white region the mean SNR is 15.3 ± 10.8 (n = 179). As the MUs get 

deeper, the signals get more attenuated, and the signal-to-noise ratio decreases.  
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matched with corresponding EMG decomposed units. For these 

140 units, the median RoA for predicted discharge times was 

>90 %, which is much higher than the ~ 30 % RoA achieved 

with stICA. Using the RoA as a measure of accuracy provides 

a conservative result, which accounts for errors in the US 

decomposition but also in the EMG decomposition and editing. 

Thus, the accuracy in US decomposition was considerably high. 

We validated 140 of the 409 units detected by US using 

concomitant EMG-based decomposition which has been widely 

validated in previous works [21], [29], [52]. For the 269 

remaining units, we had no ground truth for discharge times 

since they could not be blindly identified using EMG 

recordings. However, from the STA of the EMG signals using 

the US-identified spike trains as triggers, we showed that all 

409 estimated sources corresponded to clear MUAP waveforms 

in the EMG signal, wih amplitude above the noise level. 

Therefore, we argue that all 409 US-identified sources 

corresponded to MUs. The 269 units identified by US only also 

showed similar distributions for discharge rates, PNR, and CoV 

of discharge times to those common with EMG.  

In our model, we made some key assumptions of note. One 

assumption is that the twitch response of a given unit (as 

recorded by a given pixel) is constant for the duration of the 

recording. There is evidence to suggest that this may not hold – 

in force-based experiments, the shapes of MU force twitches 

evolve over time with continuous activation [53], [54]. 

Although there is a complex relation between the twitch 

velocity within the muscle volume and the output muscle force 

due to force transfer throughout the muscle and the tendon, this 

may indicate that the twitch velocity profile may vary over time, 

too. Furthermore, previous work has shown that MU twitch 

profiles sum non-linearly [55], such that the twitch response of 

a unit depends on the activity of nearby units. This, too, would 

imply changes of the twitch shape across the recording 

duration. In summary, changes in twitch shape throughout the 

recording duration may affect the heights of peaks in the US 

output. However, at the low contraction levels considered in 

this study, the influence of this effect was moderate.  

With respect to the depth of the units, we conclude that, 

contrary to EMG, the MU depth is accurately represented in the 

US decomposition. Of the 140 common units, 92% were 

located in the most superficial 1 cm of muscle, which is 

consistent with the low penetration depth of surface EMG. 

Whilst the further 8% were deeper within the muscle, these 

units are likely deeper at the location of the US plane than the 

location where they were detected by the HDsEMG grid due to 

the pennation angle, or the units have split territories [16], [28], 

[56]. In the case of split territories, the unit will appear in the 

decomposition of multiple sub-grids, but only the least noisy 

output is retained when duplicates are removed. Hence, 

although a unit appears deep, electrical activity in a more 

superficial part of the unit’s territory may be detectable using 

EMG sensors. Example analysis of two such units is shown in 

Supplementary Material (iii).  

Furthermore, the US-based method provides insight into 

units inaccessible using EMG. Fig. 5 shows that MUs are found 

up to 3 cm into the muscle. The shape of the distribution has 

some key features, explored in Fig. 8, where the total number 

of US MUs (409) is considered. From this plot, we observe that 

most units (56 %) were located in the most superficial 1 cm of 

the muscle. A potential reason for this observation is that the 

experiment used online EMG decomposition feedback, thus 

ensuring that EMG-accessible (hence superficial) units were 

recruited stably across the 30 seconds. After the most 

superficial 1 cm, we see a dip in the number of identified MUs, 

which coincides approximately with the central aponeurosis of 

the TA muscle. Therefore, the connective tissue will likely limit 

the motion here, reducing the space for MU identification. At 

the deepest points, the distribution trails off as participants with 

smaller muscles do not have muscle below the most superficial 

2.5 cm. In summary, although it was possible to identify more 

MUs from EMG than from US (641 vs 409), likely due to the 

large muscle area covered by HDsEMG sensors and the bias in 

TABLE 2 

COMPARISON OF METHODS FOR INDIVIDUAL MU ANALYSIS. ‘INVASIVE?’ INDICATES WHETHER THE SPECIFIC METHOD IS INVASIVE, ‘VOLUNTARY?’ 

INDICATES IF THE METHOD HAS BEEN VALIDATED IN VOLUNTARY CONTRACTIONS, ‘MN FIRING TIMES?’ STATES WHETHER IT HAS BEEN SHOWN THAT THE 

METHOD CAN ACCURATELY DETECT FIRING TIMES OF MOTOR UNITS. 

Method Invasive? Voluntary? MN firing times? Detection region Citations 

iEMG Yes Yes Yes Small [2],[21] 

(HD)sEMG No Yes Yes Medium [21],[29],[52] 

MMG No Yes No Medium [41]–[43] 

MRI No No No Large [28], [44]–[46] 

US (stICA) No Yes No Large [17]–[20] 

US (convBSS) No Yes Yes Large Present paper 

 

 

 
Fig. 8.  Left and middle: Example US images from the tibialis anterior muscle 

of two participants, showing the end of the muscle (yellow arrow) and the 
location of the central aponeurosis (red allow). Right: The density of MUs 

identified using US decomposition as a function of depth within the muscle. 

The highest density of MUs is identified in the 3-9 mm region, partially due 
to experimental bias (the use of online feedback based on stable recruitment 

of EMG detectable, and therefore superficial, units) and partly as all 

participants have muscle here. The dip at approximately 1 cm is due to the 
central aponeurosis, and the distribution tails off after 2.5 cm as some 

participants muscles end here (e.g., left US image). 
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the experimental setup due to the EMG online feedback, those 

MUs identified from US had muscle units distributed across the 

entire muscle cross-section, contrary to EMG. 

In previous decompositions of US data, the RoA with respect 

to EMG was calculated using a window of 30 ms (± 15 ms 

around the EMG spike) [20], [26], which is extremely large. In 

contrast, we used a window of 0-5 ms following the EMG-

detected spike after signal alignment. The time shift applied to 

the US signal represents the time between the EMG and US 

discharge times and likely reflects a combination of the 

excitation-contraction coupling and the identification of the 

‘onset’ of the signal using this method. However, once this 

offset was removed, high RoAs are achieved in a small window, 

and variability was very low. Hence, although there was a small 

offset between the signals, the offset was relatively constant 

throughout the recording. 

In this validation study, single-angle plane wave imaging was 

used with an algorithm to calculate velocity parallel to the US 

beams, similar to other studies which have been used to study 

individual MU twitches [7], [16], [20]. In future work, we 

propose that instead, methods capable of extracting velocity 

data both parallel and perpendicular to the US beam are applied. 

In general, this will provide a more detailed description of the 

MU twitch profile. In this work specifically, this may allow for 

the identification of more MUs, e.g., near the skin-fat interface 

the subtle twitch displacements perpendicular to the interface 

may be limited, whereas those parallel to the interface may not. 

Hence, twitches too small to identify with the current velocity 

tracking method may be elucidated. Such methods include 

transverse oscillations [57], or utilizing coherent plane wave 

compounding [58]. The latter of these would also increase the 

resolution of the images, enriching the data further. For further 

improvement, three-dimensional ultrasound imaging using 

matrix array probes [37] should be considered for two reasons: 

first, this will remove issues of out-of-plane movements as a 

volume, as opposed to a plane, will be imaged, enabling higher 

contraction levels to be studied where muscle motion is greater; 

second, this would enable study of additional parameters for 

each decomposed MU, such as contraction velocity along the 

fiber length [10]. 

This work has shown for the first time that decomposition of 

US image series into individual MU discharge times, and 

therefore into the direct neural drive to the muscle, is possible 

across the whole muscle cross-section. While the results are 

already substantially superior to previous approaches, the 

method can be further refined. Firstly, whilst the validation 

provided in this paper used the same parameters, including 

window size, noise thresholding, and unit selection criteria for 

all participants, results could likely be improved with 

participant-wise adaptive selection of parameters. This would 

mirror the editing process routinely performed by experts on 

HDsEMG based decomposition [39]. Hence, work should be 

done into auto-selection of the best parameter space for a given 

participant. Furthermore, besides the inability to detect deep 

MUs, a key issue with EMG is its inability to decompose MU 

activity in dynamic contractions. Future work should test US 

decomposition on dynamic contractions alongside higher force-

level contractions. Finally, as discussed above, recent work has 

shown some non-linearity in the summation of twitch velocities 

across MUs [55]. Although the method of linear convolutive 

decomposition presented here has shown a marked 

improvement in spike train estimation with respect to the linear 

instantaneous decomposition method, in the future, considering 

a non-linear approach, or introduction of non-linear steps into 

this approach, may further improve the decomposition 

performance. 

V. CONCLUSION 

In this work, we have presented the first methodology for full 

decomposition of the series of MU discharge times across an 

entire muscle cross-section, using ultrafast US. This has 

significance both for studying human neurophysiology and for 

non-invasive human-machine interfacing. It enables precise 

localization and further spatial information for MUs, as well as 

precise temporal information for times of APs and, therefore, 

spinal MN activity. We have provided an experimental 

validation for the proposed methodology. In contrast with 

commonly used sEMG, activity from deeper units can be 

decomposed, and further enriching information can be obtained 

about unit distribution, shape, and size. In contrast with other 

US decomposition techniques that cannot extract neural 

discharge times across the US image series, our method 

provides a reliable source estimation with accurate neural 

discharge times. 
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